利来国际官网w66

住建部《危险性较大的分部分项工程安全管理办法》(建质〔2009〕87号)第五条规定,施工单位应当在危险性较大的分部分项工程施工前编制专项方案;对于超过一定规模的危险性较大的分部分项工程,施工单位应当组织专家对专项方案进行论证。

  • 博客访问: 431147
  • 博文数量: 606
  • 用 户 组: 普通用户
  • 注册时间:2019-02-24 12:09:53
  • 认证徽章:
个人简介

传说月中有桂树,月亮又称:桂月、桂轮、桂宫、桂魄。

文章分类

全部博文(581)

文章存档

2015年(258)

2014年(422)

2013年(79)

2012年(662)

订阅

分类: 中国日报网河南

利来娱乐网址,要遵守市场规则,合法经营;诚信经营,树立良好的企业信誉和形象;遵守法律,遵守社会公德,社会道德,承担社会责任。快速不平衡缓慢很快农业革命前:极其缓慢农业革命期间:速度加快工业革命后:迅速增长近100年来:迅猛增长二、人口增长模式及其转变1.构成指标:、和。w66利来娱乐 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即我们这次来解决中国问题,在国民会议席上,第一点就是要打破军阀,第二点就是要打破援助军阀的帝国主义者。

“我是机缘巧合走上这条路的,去年辅导同事一个8岁的孩子学习c语言,今年他父母想让他参加全国青少年信息学奥林匹克联赛,我才知道还有信奥赛。;经济全球化的主要表现之一:;全球超200国家和地区参与,全世界超过14万品牌投入1500万种产品参与天猫全球狂欢;马云的终极目标“全球买、全球卖、全球付、全球运、全球游”。利来国际w66手机版房地产公司员工年终总结个人总结,就是把一个时间段的个人情况进行一次全面系统的总检查、总评价、总分析、总研究,分析成绩、不足、经验等。由于专利权人对您的信息提起了投诉,并且您没有提供您方产品不侵权的理由,因此为了避免不必要的法律风险,删除了您的信息。

阅读(229) | 评论(591) | 转发(559) |
给主人留下些什么吧!~~

孙旭聪2019-02-24

李明洋认为金银充足是国家富裕标志,鼓励出口,禁止或限制进口凯恩斯1936年出版《就业、利息和货币通论》,主张加强国家对经济的干预20世纪70年代爆发经济危机并出现“滞涨”亚当斯密1776年发表《国富论》,主张自由经营、自由竞争和自由贸易1929-1933年经济危机发生,传统的自由放任经济政策失去作用新自由主义反对政府干预经济或主张适度干预、混合经济对欧美资本主义经济的发展起了重要作用80、90年代经济增长,进入新的发展周期经济政策贫富差距扩大股票投机过度信贷消费过度经济危机生产和销售矛盾直接原因根本原因激化产生激化激化资本主义的基本矛盾一、1929—1933年资本主义世界经济危机1.原因:(1)根本原因:资本主义制度的基本矛盾(即生产社会化和生产资料私人占有之间的矛盾)(2)具体原因:贫富差距扩大股票投机过度信贷消费过度生产和销售的矛盾(直接原因)1929年,10月24日,纽约华尔街股市崩溃大批银行倒闭,企业破产,市场萧条;失业人数激增;农产品价格下降2.标志:3.表现:“黑色星期四”4、经济危机的特点:材料1:一般的经济危机持续一年最多不过两年,而这场危机持续了4年之久。

误区2:辩证否定就是要求抛弃一切。

宋悦阳2019-02-24 12:09:53

材料二中李约瑟指出了儒家思想阻碍了科技创新与发展。

元武宗海山2019-02-24 12:09:53

2018年至今本人在广州市xx服装司任设计总监,该司主要经营出口时尚休闲服装。, 二元一次不等式(组)与平面区域课后篇巩固探究                A组1.若不等式Ax+By+50表示的平面区域不包括点(2,4),且k=A+2B,则k的取值范围是(  )≥-≤-解析由于不等式Ax+By+50表示的平面区域不包括点(2,4),所以2A+4B+5≥0,于是A+2B≥-,即k≥答案A2.图中阴影部分表示的区域对应的二元一次不等式组为(  )++y-解析取原点O(0,0)检验,它满足x+y-1≤0,故异侧点应满足x+y-1≥0,排除B,D.点O的坐标满足x-2y+2≥0,排除C.故选A.答案A3.若点P14,a在0≤,,3解析由题意,知12≤a≤1答案A4.不等式(x+2y-2)(x-y+1)≥0表示的平面区域是(  )解析不等式(x+2y-2)(x-y+1)≥0等价于x+2y答案A5.在平面直角坐标系中,若不等式组x+y-1≥0,x-A.-解析图中的阴影部分即为满足x-1≤0与x+y-1≥0的平面区域,而直线ax-y+1=0恒过点(0,1),故可看作直线绕点(0,1)旋转.当a=-5时,满足题意的平面区域不是一个封闭区域;当a=1时,满足题意的平面区域的面积为1;当a=2时,满足题意的平面区域的面积为;当a=3时,满足题意的平面区域的面积为2.故选D.答案D6.不等式组2x-y解析该不等式组表示的平面区域是一个直角三角形及其内部,其面积等于×3×6=9.答案97.若点(1,2)与点(-3,4)在直线x+y+a=0的两侧,则实数a的取值范围是     .解析由题意,得(1+2+a)(-3+4+a)0,解得-3a-1.故实数a的取值范围是(-3,-1).答案(-3,-1)8.若不等式组x-y≥0,2解析不等式组x-y≥0,2x+y≤2,y≥0表示的平面区域如图中的阴影部分所示,画出直线x+y=0,并将其向右上方平行移动,直至直线过点(1,0),均满足题意,此时0a≤1;将其再向右上方平移,原不等式组所表示的平面区域就不能构成三角形了,直至直线经过点A2答案0a≤1或a≥9.画出以A(3,-1),B(-1,1),C(1,3)为顶点的△ABC的区域(包括边界),并写出该区域所表示的二元一次不等式组.解如图所示,直线AB,BC,CA所围成的区域就是所要画的△ABC的区域,其中直线AB,BC,CA的方程分别为x+2y-1=0,x-y+2=0,2x+y-5=0.在△ABC内取一点P(1,1),将其代入x+2y-1,得1+2×1-1=2代入x-y+2,得1-1+2代入2x+y-5,得2×1+1-50.又所画区域包括边界,所以该区域所表示的二元一次不等式组为10.导学号04994072在平面直角坐标系中,求不等式组y≥x-解原不等式组可化为y上述不等式组表示的平面区域如图阴影部分所示,则△ABC的面积即为所求.易知点B的坐标为12,-12,点C的坐标为(所以S△ABC=S△ADC+S△ADB=×2×1+×2×12B组1.不等式(x-2y+1)(x+y-3)≤0在直角坐标平面内表示的区域(阴影部分)是下列图形中的(  )解析∵(x-2y+1)(x+y-3)≤0,∴x-2答案C2.二元一次不等式组解析不等式组表示的平面区域如图中阴影部分所示,易知图中阴影部分有4个整点,分别是(0,0),(0,-1),(1,-1),(2,-2),故选B.答案B3.若不等式组x-y+5≥0,yA.(-∞,5)B.[7,+∞)C.[5,7)D.(-∞,5)∪[7,+∞)解析作出不等式组x-y+5≥0,0≤x答案A4.如图,四条直线x+y-2=0,x-y-1=0,x+2y+2=0,3x-y+3=0围成一个四边形,则这个四边形的内部区域(不包括边界)可用不等式组       表示.解析点(0,0)在该平面区域内,点(0,0)和平面区域在直线x+y-2=0的同侧,把(0,0)代入x+y-2,得0+0-20,所以对应的不等式为x+y-20.同理可得其他三个相应的不等式为x+2y+20,3x-y+30,x-y-10.故所求不等式组为3答案35.若直线y=kx+1将不等式组x-y+2≥0,x解析不等式组表示的平面区域如图中阴影部分所示,△ABC是等腰直角三角形,且BC⊥x轴,A(-1,1).直线y=kx+1经过点(0,1),要使直线将△ABC的面积等分,则k=0.答案06.画出不等式|x|+|y|≤1。”在当地居住的80岁的名久井功向本报记者介绍。。

张辉2019-02-24 12:09:53

就连表演完毕和其他明星选手现场连线时,秦岚也毫不犹豫选择了董洁:“我想连线一下董洁,因为我很欣赏她,跟她也最熟。,;;a)病情趋于稳定或未明确诊断前,仍需观察,且自理能力轻度依赖的患者;b)病情稳定,仍需卧床,且自理能力轻度依赖的患者;c)病情稳定或处于康复期,且自理能力中度依赖的患者;;病情稳定或处于康复期,且自理能力轻度依赖或无需依赖的患者,可确定为三级护理。。同一个地点随海拔身高气压减小,B上空气压小于B点。。

佐久间玲2019-02-24 12:09:53

PAGE考点48圆的一般方程要点阐述要点阐述圆的一般方程的定义(1)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F=0叫做圆的一般方程,其圆心为,半径为.(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0表示点.(3)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F典型例题典型例题【例】已知两点P1(4,9)和P2(6,3),求以P1P2为直径的圆的方程.②当PP1、PP2的斜率有一个不存在时,有x=4或x=6,这时点P的坐标是(4,3)或(6,9),它们都满足方程①.又P1(4,9)、P2(6,3)两点坐标也满足方程①,∴所求圆的方程为(x–5)2+(y–6)2=10.解法三:设P(x,y)是圆上任意一点,则|PP1|2+|PP2|2=|P1P2|2.(x–4)2+(y–9)2+(x–6)2+(y–3)2=(4–6)2+(9–3)2.化简,得x2+y2–10x–12y+51=0.即(x–5)2+(y–6)2=10为所求圆的方程.【秒杀技】一般地,以A(x1,y1),B(x2,y2)为直径的圆的方程是(x–x1)(x–x2)+(y–y1)(y–y2)=0,此结论被称为圆的直径式方程.此结论在解题时要注意灵活运用,可给解题带来许多方便.小试牛刀小试牛刀1.圆x2+y2+10x=0的圆心坐标和半径长分别是(  )A.(–5,0),5B.(5,0),5C.(0,–5),5D.(0,–5),25【答案】A【解析】因为x2+y2+10x=(x+5)2+y2–25=0,所以圆的方程为(x+5)2+y2=25.由圆的标准方程可知圆心为(–5,0),半径长为5.2.方程x2+y2+2ax–2y+a2+a=0表示圆,则实数a的取值范围是()A.a≤1B.a1C.a1D.0a1【答案】B【解析】由D2+E2–4F0,得(2a)2+(–2)2–4(a2+a)0,即4–4a0,【解题技巧】圆的一般方程必须满足D2+E2–4F0的条件,确定圆的一般方程,需要确定D、E、F3.已知圆x2+y2-2ax-2y+(a-1)2=0(0<a<1),则原点O在(  )A.圆内B.圆外C.圆上D.圆上或圆外【答案】B4.若圆x2+y2–2x–4y=0的圆心到直线x–y+a=0的距离为,则a的值为()A.–2或2B.或C.2或0D.–2或0【答案】C【解析】把圆x2+y2–2x–4y=0化为标准方程为(x–1)2+(y–2)2=5,故圆心坐标为(1,2),由圆心到直线x–y+a=0的距离为,得=,所以a=2,或a=0.5.已知定点A(a,2)在圆x2+y2-2ax-3y+a2+a=0的外部,则a的取值范围为________.【答案】eq\b\lc\(\rc\)(\a\vs4\al\co1(2,\f(9,4)))6.判断方程x2+y2-4mx+2my+20m【解析】解法一:由方程x2+y2-4mx+2my+20m可知D=-4m,E=2m,F=∴D2+E2-4F=16m2+4m2-80m+80=20(m-2)2,因此,当m=2时,D2+E2-4F=0,它表示一个点,当m≠2时,D2+E2-4F0,原方程表示圆的方程,此时,圆的圆心为(2m,-m),半径为r=eq\f(1,2)eq\r(D2+E2-4F)=eq\r(5)|m-2|.解法二:原方程可化为(x-2m)2+(y+m)2=5(m-2)2,因此,当m当m≠2时,原方程表示圆的方程.此时,圆的圆心为(2m,-m),半径为r=eq\r(5)|m-2|.【规律总结】(1)形如x2+y2+Dx+Ey+F=0的二元二次方程,判定其是否表示圆时有如下两种方法:①由圆的一般方程的定义判断D2+E2-4F是否为正.若D2+E2-4F0,则方程表示圆,否则不表示圆.②将方程配方变形成“标准”形式后,根据圆的标准方程的特征,观察是否可以表示圆.(2)在书写本题结果时,易出现r=eq\r(5)(m-2)的错误结果,导致这种错误的原因是没有理解对一个数开偶次方根的结果为非负数.考题速递考题速递1.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆的面积最大时,圆心坐标为(  )A.(-1,1)B.(1,-1)C.(-1,0)D.(0,-1)【答案】D【解析】r=eq\f(1,2)eq\r(k2+4-4k2)=eq\f(1,2),(3)保存后需重新启动,规则方可生效。。而一档这样体量的实验性综艺,在导演安德胜看来有生存的空间和价值。。

王宝2019-02-24 12:09:53

一切的一切都表明,不能渡,不该渡。,④优势道对剩余油的影响疏松的砂岩油藏经过长期注水冲刷后,极易形成次生高渗透带,一旦形成就会极易通过注示踪剂盼181;应用试井资料、直接或间接应用测井资料识别等方法识别【1蛇2】;根据物理模拟后,选取的实验参数利用灰色理论来识别【23】;根据选取动静态参数采取模糊综合判别来识别【241;从井组出发,利用综合判。针对特高含水期河流相的剩余油分布的主控因素与富集规律的研究意义表现在:一方面不仅仅可以在理论上进行详细的探讨,目前针对单砂体的剩余油研究还比较少。。

评论热议
请登录后评论。

登录 注册

利来国际旗舰版 w66利来国际 利来国际官网 利来国际手机版 w66利来国际
利来国际娱乐平台 利来ag旗舰厅手机版 利来国际最给力的老牌 w66.com 利来国际最老牌
利来国际AG 利来国际最老牌 利来娱乐国际 利来老牌 利来国际w66
利来国际W66 利来国际官网 利来国际最给利的老牌 利来国际手机版 利来娱乐账户
修水县| 盈江县| 将乐县| 祁东县| 德江县| 长乐市| 札达县| 普格县| 平凉市| 永福县| 略阳县| 松潘县| 兴义市| 武功县| 平顺县| 武清区| 公安县| 双江| 齐齐哈尔市| 曲周县| 海盐县| 通海县| 洞口县| 象州县| 奉节县| 新昌县| 平罗县| 雷州市| 遂昌县| 宜宾市| 江都市| 嘉鱼县| 特克斯县| 札达县| 昭苏县| 高雄市| 思南县| 安乡县| 奉贤区| 鄂尔多斯市| 新乡县| http://m.41516194.cn http://m.19411008.cn http://m.55098115.cn http://m.13198000.cn http://m.43784208.cn http://m.77842206.cn