利来国际官网w66

(一)实事求是做好《**县土地改革史》的征集出版工作2013年,县政协决定由我负责**县土地史料的收集、整理、出版工作。

  • 博客访问: 480391
  • 博文数量: 427
  • 用 户 组: 普通用户
  • 注册时间:2019-02-24 10:56:42
  • 认证徽章:
个人简介

望大家配合,以营造出一个优秀、和谐的班集体!第十学习小组组长整改措施我的职位男厕所负责人我的职责首先,安排好每天的值日生(早、中、下午及晚上),再如实评价和记载该天的卫生情况,管理好清洁工具和班费的开支,不定期地在班上进行生活辅导。

文章分类

全部博文(369)

文章存档

2015年(462)

2014年(762)

2013年(674)

2012年(829)

订阅

分类: 第一新闻网

利来娱乐网址,年轻人总是不自觉地就飘起总想飞,但是成功需要落下稳扎稳打一步一步走,所以要在日常的工作过程中必须脚踏实地,做好眼前工作,勤勤恳恳扎扎实实夯实职业生涯高楼的地基,步步为营不荒废生命的每一分钟。用户账户一经转让,该账户项下权利义务一并转移。利来国际游戏平台均视为同一用户。国家——应当制定合理的分配政策,既保证国家财政财政收入稳步增长,又促进企业的持续发展和人民生活水平的不断提高。

主要的突出问题是人口增长过快或过慢的问题、人口老龄化问题。总结是应用写作的一种,是对已经做过的工作进行理性的思考。w66.com望大家配合,以营造出一个优秀、和谐的班集体!厕所负责人整改措施我的职位学习小组组长1、全面负责本小组的各项工作。根据下图所示请回答以下问题。

阅读(255) | 评论(739) | 转发(954) |

上一篇:利来官方网站w66利来

下一篇:老牌利来

给主人留下些什么吧!~~

海军本部打杂2019-02-24

包文鼎5.规划断面管廊规划断面根据不同的入廊管线情况,主要分为单舱、双舱、三舱、四舱等不同型式。

圆面积的定义orr以正方形的边长为半径画一个圆,圆面积是正方形面积的几倍?圆面积比正方形面积的3倍多一些,也就是比半径平方(r2)的3倍多一些。

杨小哲2019-02-24 10:56:42

每个日本人都应该关心此事。

赵萍2019-02-24 10:56:42

 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂,;漫画:资本的跨国运动;(生产领域)各国企业分别生产某一产品的不同部件等材料;主要通过跨国公司来实现的。。体现共同富裕原则,广泛吸收社会资金,缓解就业压力,增加积累和税收。。

太祖爱新觉罗努尔哈赤2019-02-24 10:56:42

PAGE3.课后篇巩固探究                A组1.已知某线性规划问题中的目标函数为z=3x-y,若将其看成直线方程,则z的几何意义是(  )A.该直线的截距B.该直线的纵截距C.该直线的纵截距的相反数D.该直线的横截距解析由z=3x-y,得y=3x-z,在该方程中-z表示直线的纵截距,因此z表示该直线的纵截距的相反数.答案C2.目标函数z=x-y在2x-yA.(0,1)B.(-1,-1)C.(1,0)解析可以验证这四个点均是可行解,当x=0,y=1时,z=-1;当x=-1,y=-1时,z=0;当x=1,y=0时,z=1;当x=,y=时,z=0.排除选项A,B,D,故选C.答案C3.若变量x,y满足约束条件x+y≤3,x-y≥-有最大值无最小值有最小值无最大值的最小值是的最大值是10解析由z=4x+2y,得y=-2x+.作出不等式组对应的平面区域,如图阴影部分所示.平移直线y=-2x,当直线y=-2x+经过点B(0,1)时,直线y=-2x+在y轴上的截距最小,此时z最小,且zmin=2.当直线y=-2x+经过点C(2,1)时,直线y=-2x+在y轴上的截距最大,此时z最大,且zmax=4×2+2×1=10.故选D.答案D4.若直线y=2x上存在点(x,y)满足约束条件x+y-3≤0,A.-解析满足约束条件的平面区域如图中的阴影部分所示,由y=2x,x+y-3=0得交点P(1,2).答案B5.已知实数x,y满足约束条件x-y+4≥0,x+y解析因为z=2x+y,所以y=-2x+z.不等式组满足的平面区域如图阴影部分所示.平移直线2x+y=0,由图形可求得z=2x+y的最小值是-2.答案-26.已知变量x,y满足2x-y≤0,解析作出可行域,如图阴影部分所示.由图知,目标函数z=x+y-2在点A处取得最大值.易知A(1,2),故zmax=1+2-2=1.答案17.铁矿石A和B的含铁率a、冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c如下表:ab/万吨c/百万元A50%13B70%某冶炼厂至少要生产万吨的铁,若要求CO2的排放量不超过2万吨,则购买铁矿石的最少费用为     百万元.解析设需购买铁矿石Ax万吨,铁矿石By万吨,购买费用为z,则根据题意得到的约束条件为x≥0,y≥0,+≥,x+≤2,目标函数为z=3x+答案158.导学号04994076已知S为平面上以A(3,-1),B(-1,1),C(1,3)为顶点的三角形区域(含三角形内部及边界).若点(x,y)在区域S上移动.(1)求z=3x-2y的最值;(2)求z=y-x的最大值,并指出其最优解.解(1)z=3x-2y可化为y=x-z2=32x+b,故求z的最大值、最小值,相当于求直线y=x+b在y轴上的截距b的最小值、最大值,即b①如图①,平移直线y=x,当y=x+b经过点B时,bmax=,此时zmin=-2b=-5;当y=x+b经过点A时,bmin=-112,此时zmax=-2b=11.故z=3x-2y的最大值为11,最小值为-5(2)z=y-x可化为y=x+z,故求z的最大值,相当于求直线y=x+z在y轴上的截距z的最大值.如图②,平行移动直线y=x,当直线y=x+z与直线BC重合时,zmax=2,此时线段BC上任一点的坐标都是最优解.②9.甜柚和脐橙是赣州地区的两大水果特产,一农民有山地20亩,根据往年经验,若种脐橙,则每年每亩平均产量为1000千克;若种甜柚,则每年每亩平均产量为1500千克.已知脐橙成本每年每亩4000元,甜柚成本较高,每年每亩12000元,且脐橙每千克卖6元,甜柚每千克卖10元.现该农民有120000元,那么两种水果的种植面积分别为多少,才能获得最大收益解设该农民种x亩脐橙,y亩甜柚时,能获得利润z元.则z=(1000×6-4000)x+(1500×10-12000)y=2000x+3000y,其中x,y满足条件x+y当直线y=-x+z3000经过点B组                1.若变量x,y满足约束条件x+y≤8,2y-x≤4,x≥0,解析画出可行域,如图阴影部分所示.由图可知,当直线y=x5+z5经过点A时,z有最大值;经过点B时,z有最小值.联立方程组x+y对x+y=8,令y=0,则x=8,即B(8,0),所以a=5×4-4=16,b=5×0-8=-8,则a-b=16-(-8,……;1.种子发育为植物是()A.事物的量变过程B.事物自身否定的结果C.外力作用的否定D.新事物与旧事物一刀两断2.下列说法符合辩证否定原理是()A.把刚写好的字又涂掉B.看到洗澡水脏了,就把它连同盆中的小孩一起倒掉C.改革是自我完善和发展D.青年学生要成长为共产主义者,就必须和旧是的东西实行彻底的决裂;3.人类在发明创造活动中,对某一事物的“习惯性”思维往往制约着人们的发明眼界。。基本格式1、标题2、正文开头:概述情况,总体评价;提纲挈领,总括全文。。

张廷2019-02-24 10:56:42

;当重生成功后,鹰王及整个族群又将迎来辉煌的30年!;1.鹰重生的过程是不是辩证的否定?为什么?2.从哲学上,重生前后的鹰有何区别和联系?3.从哲学角度看,鹰的重生过程是不是发展?;误区1:事物的否定源自外部的力量。,他主张诗应该抒写性情,因此,多数作品抒发闲情逸致,著作有《随园诗话》、《小仓山房集》和《子不语》等。。哈佛医学院的专家们建议人们常吃橘子来降低这些患病概率。。

朱子厚2019-02-24 10:56:42

法院书记员06年度个人工作总结个人总结,就是把一个时间段的个人情况进行一次全面系统的总检查、总评价、总分析、总研究,分析成绩、不足、经验等。,林彪115师歼灭日军1000多人林彪概况二.抗日根据地的建立与发展1.建立抗日根据地《抗日根据地示意图》全面抗战爆发后,八路军和新四军挺进敌后,先后建立晋察冀、晋绥、晋冀豫、山东、苏南、陕甘宁等抗日根据地。。为什么木条、硫分别在空气里和氧气里燃烧的现象不同它说明了什么——氧气的含量越高,燃烧越剧烈。。

评论热议
请登录后评论。

登录 注册

利来国际W66 利来娱乐老牌 利来娱乐账户 利来国际娱乐 利来国际w66利来国际w66
利来娱乐在线平台 w66.cm利来国际 利来网上娱乐 利来国际ag旗舰厅app 利来国际AG
利来国际备用 利来娱乐城 w66.com 利来官方网站w66利来 利来娱乐网
利来国际W66 w66.com 利来国际手机版 利来国际备用 利来国际手机客户端
南溪县| 怀集县| 河源市| 卓资县| 蕲春县| 井研县| 白银市| 安宁市| 息烽县| 高密市| 介休市| 大埔县| 武鸣县| 彰化市| 庆安县| 沾益县| 哈巴河县| 洪湖市| 黑河市| 民县| 吴忠市| 卓尼县| 应用必备| 阳城县| 奇台县| 泗水县| 东乡族自治县| 百色市| 清水县| 萨嘎县| 滨海县| 乳山市| 泉州市| 建平县| 河曲县| 微博| 衡阳县| 凉城县| 华容县| 沿河| 灵丘县| http://m.43149878.cn http://m.93599426.cn http://m.36261780.cn http://m.10825339.cn http://m.95675973.cn http://m.99454347.cn